Intro Stack Buffer Overflow Workshop

UC Davis Cybersecurity Club
Nate Buttke

May 2, 2022

Icebreaker?!7117
[]

Icebreaker

What do you remember from last time?
OR
How familiar are you with assembly?

Key points from last time

e Endianness

o Little endian: least significant byte has the lowest address
e Big endian: Most significant byte has the lowest address

@ Local variables should be next to each other in memory (on
the stack). gets and strcpy are not secure.
e gdb
o disassemble fn to view a function in assembly.
e set breakpoints by copying and pasting the hex for instructions
e To print stack data: x/24wx $esp
(x/<number><width><format> <address>)
e x/10i $rip prints 10 instructions after IP
e define hook-stop to set commands that will run after each
pause (end your input with end).

The stack
[JeJele]e]

How do functions work?

o If the computer starts at some point in memory (%eip), and
executes instructions sequentially, how can we redirect control
flow?

The stack
[JeJele]e]

How do functions work?

o If the computer starts at some point in memory (%eip), and
executes instructions sequentially, how can we redirect control
flow?

o Modify %eip! Just put the address of the function’s first
instruction into %eip. In assembly, we keep track of function
locations with labels, e.g. jmp label.

@ We also need to know where to return to. So, we push the
return address onto a part of memory called the stack.

The stack
0@000

The stack

@ The stack is a conventional part of computer memory
e It is a first-in-first-out (FIFO) data structure

o Contains return addresses, local variables, arguments, and
stack frames for each function. This allows backtracing,
among other things.

@ In assembly programming, the stack is used mostly through
push and pop instructions

@ On Intel, the stack grows toward 0. So, the stack includes
(%esp) and all higher addresses.

The stack
[e]e] lele]

The stack (grows toward 0)

top of stack

Stack Pointer ———» N
Locals of
DrawLine stack frame
Frame Pointer > for
| > .
Return Address DrawLine
subroutine
Parameters for
DrawLine
Locals of
stack frame DrawSquare
for Return Address
DrawSquare
subroutine Parameters for
DrawSquare

R. S. Shaw, Public domain, via Wikimedia Commons

The stack
[e]e]e] Jo]

This makes more sense in action (Let's work through some assembly)

#max function

max:
enter $0, $0
#max call movl 8(%ebp), %eax #argl
pushl cats cmpl Yeax, 12(%ebp) #arg2
pushl dogs jg max_true
call max max_false:
popl %edx movl 8(%ebp), %eax
popl %edx jmp max_end
max_true:

movl 12(%ebp), %eax
jmp max_end

this function has no local

variables. Look at the enter

instruction. max_end:
leave

ret

enter and leave

ENTER—Make Stack Frame for Procedure Parameters

The stack
0000e

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |[Mode Leg Mode
C8 iw00 ENTER imm16,0] Valid Valid Create a stack frame for a procedure.
C8iw01 ENTER imm16,1 Il Valid Valid Create a stack frame with a nested pointer for
a procedure.
8 iwib ENTER imm16, imm8 Il Valid Valid Create a stack frame with nested pointers for
a procedure.
LEAVE—High Level Procedure Exit
Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
a9 LEAVE NP | Valid Valid Set SP to BP, then pop BP.
c9 LEAVE NP |N.E Valid Set ESP to EBP, then pop EBP.
a9 LEAVE NP | Valid N.E. Set RSP to RBP, then pop RBP.

	Icebreaker?!?1!?
	Recap
	The stack

